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INTRODUCTION

Improper analysis of correlated observations, such as repeated measurements on the same
person, is a common error in medical studies. This article will review examples of correlated
data, demonstrate the errors that arise when correlations are ignored, and discuss how to
correctly analyze these data.

EXAMPLES OF CORRELATED OBSERVATIONS

Correlated data arise when pairs or clusters of observations are related and thus are more
similar to each other than to other observations in the dataset. Observations may be related
because they come from the same subject—for example, when subjects are measured at
multiple time points (repeated measures) or when subjects contribute data on multiple body
parts, such as both eyes, hands, arms, legs, or sides of the face. Observations from different
subjects also may be related—for example, if the dataset contains siblings, twin pairs,
husband-wife pairs, control subjects who have been matched to individual cases, or patients
from the same physician practice, clinic, or hospital. Cluster randomized trials, which are
performed to assign interventions to groups of people rather than to individual subjects (for
example, schools, classrooms, cities, clinics, or communities), also are a source of correlated
data because subjects within a cluster will likely have more similar outcomes than subjects
in other clusters.

THE CONSEQUENCES OF IGNORING CORRELATIONS

Many statistical tests assume that observations are independent. The application of these
tests to correlated observations will lead to the overestimation of P values in certain cases
(when one considers within-subject or within-cluster effects) and underestimation in others
(when one considers between-subject or between-cluster effects). These errors are illus-
trated in the following sections.

Within-Subject/Within-Cluster Comparisons

When subjects are compared with themselves under multiple treatments or at different time
points, these are called within-subject comparisons; when they are compared with related
subjects (such as twins), these are called within-pair or within-cluster comparisons. The
advantage of comparing a subject to himself or herself or to a related person is that this
comparison often results in considerable reduction in variability. Analyses that ignore the
correlations will overestimate the variability, thus artificially increasing P values and
decreasing the chances of observing a significant effect (decreasing the statistical power and
increasing the type II error rate). Two examples follow that illustrate this problem.

Example 1. The authors of a recent randomized, blinded trial compared the efficacy of 2
sunscreens by using a split-face design [1]. Fifty-six subjects applied sunscreen with a sun
protective factor (SPF) of 85 to one side of their face and an SPF of 50 to the other side of
their face (the application sides were randomly chosen, and the sunscreen types were
concealed) before spending 5 hours participating in outdoor sports on a sunny day.
Investigators determined the occurrence of sunburn on each side of the participants’ faces at
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the end of the day. A person’s tendency to burn on one side of
his or her face is highly correlated with his or her tendency to
burn on the other side. However, when the data were ana-
lyzed, these correlations were ignored: the authors reported
that 1 of 56 participants were burned on the SPF 85 side of
the face, whereas 8 of 56 were burned on the SPF 50 side
(P ⫽ .03, Fisher exact test, Table 1a). This analysis treats all
observations equally, as if there are 112 unrelated sides of the
face. Table 1b shows the correct way to present and analyze
the data.

Volunteers who burned on both sides of their face (n⫽ 1)
or neither side (n ⫽ 48) do not help us to discriminate
between the performance of SPF 85 and SPF 50; only the
volunteers who burned on a single side (n⫽ 7) are informa-
tive. The correct analysis—called the McNemar exact test
[2]—focuses only on these discordant subjects. In all 7 cases,
the sunburn occurred on the SPF 50 side. The 2-sided P value
associated with this extreme outcome (a 7-0 split) is .0156
(determined by a binomial distribution with n ⫽ 7 and P ⫽
.5). Thus the difference between the sunscreens is actually
more significant than the authors have reported. Although

the P values (.03 vs .0156) do not differ enough to change the
study’s conclusions, they can differ markedly in many cases,
as the next example illustrates.

Example 2. Consider a simple hypothetical dataset in
which investigators conducted a study with twins to examine
the association of exercise with blood pressure. Six pairs of
twins reported their physical activity levels and had their
blood pressures measured. Investigators hypothesized that
the more active twins would have lower blood pressures than
the less active twins. The results are presented in Table 2.

The mean blood pressure for the more active twins is 3.5
mm Hg lower than for the less active twins (76.5 vs 80.0). If
we ignore the correlations and analyze the data as 2 indepen-
dent groups, this difference is not statistically significant (P⫽
.41, 2-sample t-test). However, if we correctly analyze these
data by focusing on the differences within twin pairs, it is
statistically significant (P⫽ .02, paired t-test). The P value is
reduced because the variation in blood pressure within twin
pairs (standard deviation ⫽ 2.6) is considerably less than
between unrelated twins (standard deviation ⫽ 7.0 or 7.1)
and because the paired t-test only has to account for one
source of variability (variability within pairs) rather than 2
sources (variability from two groups of twins).

Between-Subjects/Between-Cluster
Comparisons

When comparisons are made between unrelated subjects or
clusters that have each received just one treatment, these are
called between-subjects or between-cluster comparisons. In
these situations, ignoring correlations in the data will lead to
an underestimation of P values. For example, if a treatment
works in a person’s left eye, it is more likely to work in his or
her right eye; thus it is unfair to count good outcomes in both
eyes as 2 independent pieces of evidence for the treatment’s
effectiveness. Doing so artificially increases the sample size,
decreases the P values, and potentially results in effects being

Table 1a. Original data table from Russak et al [1]

Sun Protection Factor Sunburned Not Sunburned

85 1 55
50 8 48

P ⫽ .03, Fisher exact test.

Reprinted with permission [1].

Table 1b. Correct presentation of the data from Russak et al [1]

SPF-85 Side

SPF-50 Side

Sunburned Not Sunburned

Sunburned 1 0
Not sunburned 7 48

P ⫽ .0156, McNemar exact test.

Reprinted with permission [1].

Table 2. A simple hypothetical dataset involving correlated data (twin pairs)

Twin Pair

Diastolic Blood Pressure
in the Less Active Twin,

mm Hg

Diastolic Blood Pressure
in the More Active Twin,

Mm Hg

Difference
(More Active – Less Active),

Mm Hg

1 87 82 ⫺5
2 88 83 ⫺5
3 80 78 ⫺2
4 79 80 ⫹1
5 77 71 ⫺6
6 69 65 ⫺4

Mean (SD) 80.0 (7.0) 76.5 (7.1) ⫺3.5 (2.6)
Test statistic Two-sample t-test (incorrect analysis):

T10 ⫽
⫺3.5

冑7.02

6
⫹

7.02

6

⫽ ⫺0.86

p ⫽ .41

Paired t-test (correct analysis):

T5⫽
⫺3.5

冑2.62

6

⫽ ⫺3.31

p ⫽ .02
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deemed significant when they should not be (a type I error).
Two examples follow that illustrate this problem.

Example 1. In a hypothetical trial, 50 patients with bilat-
eral eye disease were randomly assigned to receive an active
drug or a placebo solution in both eyes (sample size per
group is 25 patients [50 eyes]). Treatment was considered a
success if symptoms improved by more than 50% in a given
eye. Table 3 shows hypothetical results from this trial.

Strong agreement between eyes was found—80% of the
subjects had the same outcome in both eyes ( coefficient⫽
.60). Thus treating the data as if there are 100 independent
eyes will overstate the evidence for the drug’s effectiveness.
The informative sample size is actually somewhere between
100 and 50 (if there were perfect agreement between eyes, a
subject’s second eye would contribute no independent evi-
dence of the drug’s effectiveness and the sample size would
be 50). The incorrect analysis (a 2 test or logistic regression)
yields an artificially low P value of .046, whereas the correct
analysis (a generalized estimating equation, corrected for
within-subject correlation) yields a nonsignificant result of
P ⫽ .11.

Example 2. Cluster-randomized trials are a common
source of correlated data, but researchers often neglect the
correlations in their analyses [3,4]. Calhoun et al [4] present
a hypothetical example that shows the consequence of this
failure. In this hypothetical randomized trial of an interven-
tion to reduce physician error, 8 physicians were randomly
assigned to a reduced shift length (n ⫽ 4) or control condi-
tion (n ⫽ 4). The outcome was the average number of
charting errors per patient; data were obtained on 10 patients
per physician for a total of 80 patients. Table 4 shows results
from this hypothetical trial.

Observations made by the same physician will be highly
correlated. For example, 2 of the 4 physicians in the inter-
vention group are highly conscientious individuals who
made no charting errors during the study period; thus it is
clear that these 2 physicians each contribute just 1 unit of
evidence for the intervention’s effectiveness, not 10. If the
data are analyzed as 80 independent observations (with use
of a 2-sample t-test), the P value is highly significant, but the
correct analysis (a hierarchical linear model) yields a nonsig-
nificant result of P ⫽ .273.

HOW TO ADDRESS CORRELATED
OBSERVATIONS

As the aforementioned examples demonstrate, correlated
data require specialized statistical methods. Table 5 lists
examples of statistical tests that assume independence and
the corresponding tests for correlated data. For example, a
2-sample t-test is used to compare continuous, normally
distributed outcomes between 2 independent groups,
whereas a paired t-test is used to compare the same outcomes
between 2 correlated groups.

Investigators often are less familiar with tests for corre-
lated data than for uncorrelated data and may find them more
challenging to implement and interpret. Thus many authors
choose to handle correlations simply by removing them from
the dataset. Although this approach is appropriate in certain
situations, it often results in an unnecessary loss of informa-
tion and statistical power. For example, one way to remove
correlations is to change the unit of analysis. In the aforemen-
tioned physician study, the intervention was applied to phy-
sicians, not patients, so it makes sense to analyze the data at
the physician rather than patient level; in this case, we would

Table 3. A simple hypothetical dataset from a trial in which 50 subjects were randomly assigned to receive active drug (n ⫽25) or

placebo (n ⫽ 25) in both eyes

Analysis
N (%) of Eyes Improving in

the Control Group
N (%) of Eyes Improving in

the Treatment Group
P

Value
Odds Ratio and 95%
Confidence Interval

Assuming eyes are independent* 17/50 (34) 27/50 (54) .046 2.28 (1.02⫺5.11)
Correcting for within-subject
correlation†

17/50 (34) 27/50 (54) .11 2.28 (0.83⫺6.28)

*Data were analyzed with unconditional logistic regression.
†Data were analyzed by the use of a generalized estimating equation, correcting for within-subject correlation.

Table 4. A hypothetical cluster-randomized trial, from Calhoun et al [4]

Analysis

Average Charting Errors From
Control Physicians (n ⴝ 40

Patients, 4 Physicians)

Average Charting Errors From
Treated Physicians (n ⴝ 40

Patients, 4 Physicians) P Value

Assuming patients are independent* 2.75 1.7 ⬍.0001
Correcting for within-physician
correlation†

2.75 1.7 .273

*Data were analyzed with a 2-sample t-test.
†Data were analyzed by the use of hierarchical linear modeling.

860 Sainani ACCOUNTING FOR CORRELATED OBSERVATIONS



just compare the average error rate of the control physicians
(n ⫽ 4) to that of the treated physicians (n ⫽ 4). However,
analysis at the cluster level greatly reduces the sample size
and statistical power; thus, where possible, it is preferable to
maintain a lower unit of analysis and correct for within-
cluster correlations.

Another way to remove correlations is to ignore data
points—for example, researchers may only analyze one eye
or one time point per subject even though they have data on
both eyes or from multiple time points. However, this ap-
proach wastes valuable data, resulting in an unnecessary
reduction in statistical power.

CONCLUSIONS

Correlated observations require specialized statistical tests
that account for the correlations. Incorrectly analyzing these
data leads to erroneous statistical inferences—that is, P val-
ues are overestimated for within-subject or within-cluster
comparisons and underestimated for between-subject or be-
tween-cluster comparisons. This problem is a common one
in the medical literature, so readers should pay particular

attention to this issue. Authors tend to be less familiar with
the statistical tests available for correlated data than for un-
correlated data and thus may choose to remove correlations
from their data rather than account for them. Although
appropriate in some cases (eg, when the correct unit of
analysis is truly the cluster), this approach often results in an
unnecessary loss of information and statistical power.
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Table 5. Common statistical tests used to compare independent observations and the corresponding test for correlated

observations, by the type of dependent (outcome) variable

Dependent Variable Test for Independent Observations
Corresponding Test for
Correlated Observations

Continuous, normally distributed Two-sample t-test Paired t-test
Continuous or ordinal,
non-normally distributed

Wilcoxon rank sum test Wilcoxon signed rank test

Continuous, normally distributed ANOVA Repeated-measures ANOVA
Continuous, normally distributed Linear regression Mixed models; hierarchical linear models
Binary/categorical 2 test McNemar 2 test (for 2⫻2 data)
Binary/categorical Fisher exact test McNemar exact test (for 2⫻2 data)
Binary/categorical Logistic regression Conditional logistic regression or generalized

estimating equations

ANOVA ⫽ analysis of variance.
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